On Recognizable and Rational Formal Power Series in Partially Commuting Variables
نویسندگان
چکیده
We will describe the recognizable formal power series over arbitrary semirings and in partially commuting variables, i.e. over trace monoids. We prove that the recognizable series are certain rational power series, which can be constructed from the polynomials by using the operations sum, product and a restricted star which is applied only to series for which the elements in the support all have the same connected alphabet. The converse is true if the underlying semi-ring is commutative. Moreover, if in addition the semiring is idempotent then the same result holds with a star restricted to series for which the elements in the support have connected (possibly diierent) alphabets. It is shown that these assumptions over the semiring are necessary. This provides a joint generalization of Kleene's, Sch utzenberger's and Ochma nski's theorems.
منابع مشابه
On recognizable and rational formal power series
We will describe the recognizable formal power series over arbitrary semirings and in partially commuting variables, i.e. over trace monoids. We prove that the recognizable series are certain rational power series, which can be constructed from the polynomials by using the operations sum, product and a restricted star which is applied only to series for which the elements in the support all hav...
متن کاملExtension of Brzozowski's derivation calculus of rational expressions to series over the free partially commutative monoids
We introduce an extension of the derivatives of rational expressions to expressions denoting formal power series over partially commuting variables. The expressions are purely noncommutative, however they denote partially commuting power series. The derivations (which are so-called φ-derivations) are shown to satisfy the commutation relations. Our main result states that for every so-called rig...
متن کاملOn the Maximum Coefficients of Rational Formal Series in Commuting Variables
Abstract. We study the maximum function of any -rational formal series in two commuting variables, which assigns to every integer , the maximum coefficient of the monomials of degree . We show that if is a power of any primitive rational formal series, then its maximum function is of the order for some integer and some positive real . Our analysis is related to the study of limit distributions ...
متن کاملM. Droste and P. Gastin On aperiodic and star-free formal power series in partially commuting variables
Formal power series over non-commuting variables have been investigated as representations of the behavior of automata with multiplicities. Here we introduce and investigate the concepts of aperiodic and of star-free formal power series over semirings and partially commuting variables. We prove that if the semiring K is idempotent and commutative, or if K is idempotent and the variables are non...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کامل